3.948 \(\int \frac{(a+b x^2)^{3/2}}{x^3 \sqrt{c+d x^2}} \, dx\)

Optimal. Leaf size=136 \[ \frac{b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x^2}}{\sqrt{b} \sqrt{c+d x^2}}\right )}{\sqrt{d}}-\frac{\sqrt{a} (3 b c-a d) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{2 c^{3/2}}-\frac{a \sqrt{a+b x^2} \sqrt{c+d x^2}}{2 c x^2} \]

[Out]

-(a*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(2*c*x^2) - (Sqrt[a]*(3*b*c - a*d)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqr
t[a]*Sqrt[c + d*x^2])])/(2*c^(3/2)) + (b^(3/2)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x^2])/(Sqrt[b]*Sqrt[c + d*x^2])])/S
qrt[d]

________________________________________________________________________________________

Rubi [A]  time = 0.140248, antiderivative size = 136, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.308, Rules used = {446, 98, 157, 63, 217, 206, 93, 208} \[ \frac{b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x^2}}{\sqrt{b} \sqrt{c+d x^2}}\right )}{\sqrt{d}}-\frac{\sqrt{a} (3 b c-a d) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{2 c^{3/2}}-\frac{a \sqrt{a+b x^2} \sqrt{c+d x^2}}{2 c x^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^(3/2)/(x^3*Sqrt[c + d*x^2]),x]

[Out]

-(a*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(2*c*x^2) - (Sqrt[a]*(3*b*c - a*d)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqr
t[a]*Sqrt[c + d*x^2])])/(2*c^(3/2)) + (b^(3/2)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x^2])/(Sqrt[b]*Sqrt[c + d*x^2])])/S
qrt[d]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2\right )^{3/2}}{x^3 \sqrt{c+d x^2}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{(a+b x)^{3/2}}{x^2 \sqrt{c+d x}} \, dx,x,x^2\right )\\ &=-\frac{a \sqrt{a+b x^2} \sqrt{c+d x^2}}{2 c x^2}-\frac{\operatorname{Subst}\left (\int \frac{-\frac{1}{2} a (3 b c-a d)-b^2 c x}{x \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,x^2\right )}{2 c}\\ &=-\frac{a \sqrt{a+b x^2} \sqrt{c+d x^2}}{2 c x^2}+\frac{1}{2} b^2 \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx,x,x^2\right )+\frac{(a (3 b c-a d)) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,x^2\right )}{4 c}\\ &=-\frac{a \sqrt{a+b x^2} \sqrt{c+d x^2}}{2 c x^2}+b \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x^2}\right )+\frac{(a (3 b c-a d)) \operatorname{Subst}\left (\int \frac{1}{-a+c x^2} \, dx,x,\frac{\sqrt{a+b x^2}}{\sqrt{c+d x^2}}\right )}{2 c}\\ &=-\frac{a \sqrt{a+b x^2} \sqrt{c+d x^2}}{2 c x^2}-\frac{\sqrt{a} (3 b c-a d) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{2 c^{3/2}}+b \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x^2}}{\sqrt{c+d x^2}}\right )\\ &=-\frac{a \sqrt{a+b x^2} \sqrt{c+d x^2}}{2 c x^2}-\frac{\sqrt{a} (3 b c-a d) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{2 c^{3/2}}+\frac{b^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x^2}}{\sqrt{b} \sqrt{c+d x^2}}\right )}{\sqrt{d}}\\ \end{align*}

Mathematica [A]  time = 0.940658, size = 172, normalized size = 1.26 \[ \frac{\sqrt{a} (a d-3 b c) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{2 c^{3/2}}-\frac{a \sqrt{a+b x^2} \sqrt{c+d x^2}}{2 c x^2}+\frac{(b c-a d)^{3/2} \left (\frac{b \left (c+d x^2\right )}{b c-a d}\right )^{3/2} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x^2}}{\sqrt{b c-a d}}\right )}{\sqrt{d} \left (c+d x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^(3/2)/(x^3*Sqrt[c + d*x^2]),x]

[Out]

-(a*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(2*c*x^2) + ((b*c - a*d)^(3/2)*((b*(c + d*x^2))/(b*c - a*d))^(3/2)*ArcSin
h[(Sqrt[d]*Sqrt[a + b*x^2])/Sqrt[b*c - a*d]])/(Sqrt[d]*(c + d*x^2)^(3/2)) + (Sqrt[a]*(-3*b*c + a*d)*ArcTanh[(S
qrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + d*x^2])])/(2*c^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.016, size = 298, normalized size = 2.2 \begin{align*}{\frac{1}{4\,c{x}^{2}}\sqrt{b{x}^{2}+a}\sqrt{d{x}^{2}+c} \left ( 2\,\ln \left ( 1/2\,{\frac{2\,d{x}^{2}b+2\,\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ){x}^{2}{b}^{2}c\sqrt{ac}+\ln \left ({\frac{1}{{x}^{2}} \left ( ad{x}^{2}+bc{x}^{2}+2\,\sqrt{ac}\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}+2\,ac \right ) } \right ){x}^{2}{a}^{2}d\sqrt{bd}-3\,\ln \left ({\frac{ad{x}^{2}+bc{x}^{2}+2\,\sqrt{ac}\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}+2\,ac}{{x}^{2}}} \right ){x}^{2}abc\sqrt{bd}-2\,a\sqrt{bd}\sqrt{ac}\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac} \right ){\frac{1}{\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}}}{\frac{1}{\sqrt{bd}}}{\frac{1}{\sqrt{ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(3/2)/x^3/(d*x^2+c)^(1/2),x)

[Out]

1/4*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)/c*(2*ln(1/2*(2*d*x^2*b+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)+a
*d+b*c)/(b*d)^(1/2))*x^2*b^2*c*(a*c)^(1/2)+ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/
2)+2*a*c)/x^2)*x^2*a^2*d*(b*d)^(1/2)-3*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)+2
*a*c)/x^2)*x^2*a*b*c*(b*d)^(1/2)-2*a*(b*d)^(1/2)*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2))/(b*d*x^4+a*d
*x^2+b*c*x^2+a*c)^(1/2)/(b*d)^(1/2)/(a*c)^(1/2)/x^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)/x^3/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 5.52722, size = 2095, normalized size = 15.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)/x^3/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(2*b*c*x^2*sqrt(b/d)*log(8*b^2*d^2*x^4 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 8*(b^2*c*d + a*b*d^2)*x^2 + 4*(2
*b*d^2*x^2 + b*c*d + a*d^2)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(b/d)) - (3*b*c - a*d)*x^2*sqrt(a/c)*log(((b^2
*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^2 + 8*(a*b*c^2 + a^2*c*d)*x^2 + 4*(2*a*c^2 + (b*c^2 + a*c*d)*x^2)*sq
rt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(a/c))/x^4) - 4*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*a)/(c*x^2), -1/8*(4*b*c*x^2*
sqrt(-b/d)*arctan(1/2*(2*b*d*x^2 + b*c + a*d)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(-b/d)/(b^2*d*x^4 + a*b*c +
(b^2*c + a*b*d)*x^2)) + (3*b*c - a*d)*x^2*sqrt(a/c)*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^2 + 8*(
a*b*c^2 + a^2*c*d)*x^2 + 4*(2*a*c^2 + (b*c^2 + a*c*d)*x^2)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(a/c))/x^4) + 4
*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*a)/(c*x^2), 1/4*(b*c*x^2*sqrt(b/d)*log(8*b^2*d^2*x^4 + b^2*c^2 + 6*a*b*c*d +
a^2*d^2 + 8*(b^2*c*d + a*b*d^2)*x^2 + 4*(2*b*d^2*x^2 + b*c*d + a*d^2)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(b/d
)) + (3*b*c - a*d)*x^2*sqrt(-a/c)*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(-a
/c)/(a*b*d*x^4 + a^2*c + (a*b*c + a^2*d)*x^2)) - 2*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*a)/(c*x^2), -1/4*(2*b*c*x^2
*sqrt(-b/d)*arctan(1/2*(2*b*d*x^2 + b*c + a*d)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(-b/d)/(b^2*d*x^4 + a*b*c +
 (b^2*c + a*b*d)*x^2)) - (3*b*c - a*d)*x^2*sqrt(-a/c)*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt(b*x^2 + a)*sqr
t(d*x^2 + c)*sqrt(-a/c)/(a*b*d*x^4 + a^2*c + (a*b*c + a^2*d)*x^2)) + 2*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*a)/(c*x
^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x^{2}\right )^{\frac{3}{2}}}{x^{3} \sqrt{c + d x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(3/2)/x**3/(d*x**2+c)**(1/2),x)

[Out]

Integral((a + b*x**2)**(3/2)/(x**3*sqrt(c + d*x**2)), x)

________________________________________________________________________________________

Giac [B]  time = 1.96656, size = 663, normalized size = 4.88 \begin{align*} -\frac{b^{3}{\left (\frac{\log \left ({\left (\sqrt{b x^{2} + a} \sqrt{b d} - \sqrt{b^{2} c +{\left (b x^{2} + a\right )} b d - a b d}\right )}^{2}\right )}{\sqrt{b d}} + \frac{{\left (3 \, \sqrt{b d} a b c - \sqrt{b d} a^{2} d\right )} \arctan \left (-\frac{b^{2} c + a b d -{\left (\sqrt{b x^{2} + a} \sqrt{b d} - \sqrt{b^{2} c +{\left (b x^{2} + a\right )} b d - a b d}\right )}^{2}}{2 \, \sqrt{-a b c d} b}\right )}{\sqrt{-a b c d} b^{2} c} + \frac{2 \,{\left (\sqrt{b d} a b^{3} c^{2} - 2 \, \sqrt{b d} a^{2} b^{2} c d + \sqrt{b d} a^{3} b d^{2} - \sqrt{b d}{\left (\sqrt{b x^{2} + a} \sqrt{b d} - \sqrt{b^{2} c +{\left (b x^{2} + a\right )} b d - a b d}\right )}^{2} a b c - \sqrt{b d}{\left (\sqrt{b x^{2} + a} \sqrt{b d} - \sqrt{b^{2} c +{\left (b x^{2} + a\right )} b d - a b d}\right )}^{2} a^{2} d\right )}}{{\left (b^{4} c^{2} - 2 \, a b^{3} c d + a^{2} b^{2} d^{2} - 2 \,{\left (\sqrt{b x^{2} + a} \sqrt{b d} - \sqrt{b^{2} c +{\left (b x^{2} + a\right )} b d - a b d}\right )}^{2} b^{2} c - 2 \,{\left (\sqrt{b x^{2} + a} \sqrt{b d} - \sqrt{b^{2} c +{\left (b x^{2} + a\right )} b d - a b d}\right )}^{2} a b d +{\left (\sqrt{b x^{2} + a} \sqrt{b d} - \sqrt{b^{2} c +{\left (b x^{2} + a\right )} b d - a b d}\right )}^{4}\right )} b c}\right )}}{2 \,{\left | b \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)/x^3/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

-1/2*b^3*(log((sqrt(b*x^2 + a)*sqrt(b*d) - sqrt(b^2*c + (b*x^2 + a)*b*d - a*b*d))^2)/sqrt(b*d) + (3*sqrt(b*d)*
a*b*c - sqrt(b*d)*a^2*d)*arctan(-1/2*(b^2*c + a*b*d - (sqrt(b*x^2 + a)*sqrt(b*d) - sqrt(b^2*c + (b*x^2 + a)*b*
d - a*b*d))^2)/(sqrt(-a*b*c*d)*b))/(sqrt(-a*b*c*d)*b^2*c) + 2*(sqrt(b*d)*a*b^3*c^2 - 2*sqrt(b*d)*a^2*b^2*c*d +
 sqrt(b*d)*a^3*b*d^2 - sqrt(b*d)*(sqrt(b*x^2 + a)*sqrt(b*d) - sqrt(b^2*c + (b*x^2 + a)*b*d - a*b*d))^2*a*b*c -
 sqrt(b*d)*(sqrt(b*x^2 + a)*sqrt(b*d) - sqrt(b^2*c + (b*x^2 + a)*b*d - a*b*d))^2*a^2*d)/((b^4*c^2 - 2*a*b^3*c*
d + a^2*b^2*d^2 - 2*(sqrt(b*x^2 + a)*sqrt(b*d) - sqrt(b^2*c + (b*x^2 + a)*b*d - a*b*d))^2*b^2*c - 2*(sqrt(b*x^
2 + a)*sqrt(b*d) - sqrt(b^2*c + (b*x^2 + a)*b*d - a*b*d))^2*a*b*d + (sqrt(b*x^2 + a)*sqrt(b*d) - sqrt(b^2*c +
(b*x^2 + a)*b*d - a*b*d))^4)*b*c))/abs(b)